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Abstract. In the present paper we introduce some multiplier sequence
spaces defined by a sequence of modulus functions F = (fk). We also make
an effort to study some topological properties and inclusion relations
between these spaces.

1 Introduction and preliminaries

A modulus function is a function f : [0,∞) → [0,∞) such that

1. f(x) = 0 if and only if x = 0,

2. f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

3. f is increasing,

4. f is continuous from right at 0.
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It follows that f must be continuous everywhere on [0,∞). The modulus
function may be bounded or unbounded. For example, if we take f(x) = x

x+1 ,
then f(x) is bounded. If f(x) = xp, 0 < p < 1, then the modulus f(x) is
unbounded. Subsequently, modulus function has been discussed in [1], [2], [3],
[4], [5], [20], [22], [23], [24], [26] and references therein.
Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x) → 0 as n → ∞, then p(λnxn−λx) →
0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X, p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [29],
Theorem 10.4.2, P.183).
Let w denote the set of all real sequences x = (xn). By ℓ∞ and c, we denote

respectively the Banach space of bounded and the Banach space of convergent
sequences x = (xn), both normed by ∥x∥ = supn |xn|. A linear functional L on
ℓ∞ is said to be a Banach limit (see [6]) if it has the properties :

1. L(x) ≥ 0 if x ≥ 0 (i.e. xn ≥ 0 for all n),

2. L(e) = 1, where e = (1, 1, · · · ),

3. L(Dx) = L(x),

where the shift operator D is defined by (Dxn) = (xn+1).
Let B be the set of all Banach limits on ℓ∞. A sequence x is said to be almost
convergent to a number L if L(x) = L for all L ∈ B. Lorentz [17] has shown
that x is almost convergent to L if and only if

tkm = tkm(x) =
xm + xm+1 + · · ·+ xm+k

k+ 1
→ L as k → ∞, uniformly in m.

Let ĉ denote the set of all almost convergent sequences. Maddox [18] and
(independently) Freedman et al. [13] have defined x to be strongly almost
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convergent to a number L if

1

k+ 1

k∑

i=0

|xi+m − L| → 0 as k → ∞, uniformly in m.

Let [ĉ] denote the set of all strongly almost convergent sequences. It is easy
to see that [ĉ] ⊂ ĉ ⊂ ℓ∞. Das and Sahoo [11] defined the sequence space

[w(p)] =
{
x ∈ w :

1

n+ 1

n∑

k=0

|tkm(x− L)|pk → 0 as n → ∞, uniformly in m.
}

and investigated some of its properties.
The space of lacunary strong convergence have been introduced by Freedman
et al. [13]. A sequence of positive integers θ = (kr) is called ”lacunary” if
k0 = 0, 0 < kr < kr+1 and hr = kr − kr−1 → ∞, as r → ∞. The intervals
determined by θ are denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will be

denoted by qr. The space of lacunary strongly convergent sequences Nθ is
defined by Freedman et al. [13] as follows:

Nθ =
{
x = (xi) : lim

r→∞

1

hr

∑

i∈Ir

|xi − s| = 0, for some s
}
.

Lacunary sequence spaces were studied by many authors (see [7], [8], [9]) and
references therein.
Let F = (fk) be a sequence of modulus functions, p = (pk) be a bounded
sequence of positive real numbers, u = (uk) be any sequence of strictly posi-
tive real numbers and X be a seminormed space over the field C of complex
numbers with the seminorm q. By w(X) we denote the space of all sequences
x = (xk) for all k. In the present paper we define the following classes of se-
quences:

(w, θ, F, u, p, q) =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x−L)))
]pk

= 0,

uniformly in m, for some L
}
,

(w, θ, F, u, p, q)0 =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x)))
]pk

= 0,

uniformly in m
}
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and

(w, θ, F, u, p, q)∞ =
{
x = (xk) ∈ w(X) : sup

r,m

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x)))
]pk

< ∞
}
.

If we take f(x) = x, we have

(w, θ, u, p, q) =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

(q(tkm(x− L)))
]pk

= 0,

uniformly in m, for some L
}
,

(w, θ, u, p, q)0 =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

(q(tkm(x)))
]pk

= 0,

uniformly in m
}

and

(w, θ, u, p, q)∞ =
{
x = (xk) ∈ w(X) : sup

r,m

1

hr

∑

k∈Ir

uk

[

(q(tkm(x)))
]pk

< ∞
}
.

If we take p = (pk) = 1 for all k ∈ N, we have

(w, θ, F, u, q) =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x− L)))
]

= 0,

uniformly in m, for some L
}
,

(w, θ, F, u, q)0 =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x)))
]

= 0,

uniformly in m
}

and

(w, θ, F, u, q)∞ =
{
x = (xk) ∈ w(X) : sup

r,m

1

hr

∑

k∈Ir

uk

[

fk(q(tkm(x)))
]

< ∞
}
.

If we take f(x) = x and u = (uk) = 1 for all k ∈ N, we have

(w, θ, p, q) =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

[

(q(tkm(x− L)))
]pk

= 0,
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uniformly in m, for some L
}
,

(w, θ, p, q)0 =
{
x = (xk) ∈ w(X) : lim

r→∞

1

hr

∑

k∈Ir

[

(q(tkm(x)))
]pk

= 0,

uniformly in m
}

and

(w, θ, p, q)∞ =
{
x = (xk) ∈ w(X) : sup

r,m

1

hr

∑

k∈Ir

[

(q(tkm(x)))
]pk

< ∞
}
.

If we take θ = (2r), then the spaces (w, θ, F, u, p, q), (w, θ, F, u, p, q)0 and
(w, θ, F, u, p, q)∞ reduces to (w, F, u, p, q), (w, F, u, p, q)0 and (w, F, u, p, q)∞.
Throughout the paper Z will denote the 0, 1 or ∞. The following inequality
will be used throughout the paper. If 0 < h = inf pk ≤ pk ≤ suppk = H,
D = max(1, 2H−1) then

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk} (1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

In this paper we study some topological properties and prove some inclusion
relations between above defined classes of sequences.

2 Main results

Theorem 1 Let F = (fk) be a sequence of modulus functions, u = (uk) be any
sequence of strictly positive real numbers and p = (pk) be a bounded sequence
of positive real numbers. Then (w, θ, F, u, p, q)Z are linear spaces over the field
of complex numbers C.

Proof. We shall prove the result for Z = 0. Let x = (xk), y = (yk) ∈
(w, θ, F, u, p, q)0 and α,β ∈ C. Then there exist integers Mα and Nβ such
that |α| ≤ Mα and |β| ≤ Nβ. By using inequality (1.1) and the properties of
modulus function, we have

1

hr

∑

k∈Ir

uk[fk(q(tkm(αxk + βyk)))]
pk ≤ 1

hr

∑

k∈Ir

uk[fk(q(αtkmxk + βtkmyk))]
pk

≤ D
1

hr

∑

k∈Ir

uk[Mαfk(q(tkm(xk)))]
pk
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+ D
1

hr

∑

k∈Ir

uk[Nβfk(q(tkm(yk)))]
pk

≤ DMH
α

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk)))]
pk

+ DNH
β

1

hr

∑

k∈Ir

uk[fk(q(tkm(yk)))]
pk

→ 0, uniformly in m.

This proves that (w, θ, F, u, p, q)0 is a linear space. Similarly, we can prove
that (w, θ, F, u, p, q) and (w, θ, F, u, p, q)∞ are linear spaces. �

Theorem 2 Let F = (fk) be a sequence of modulus functions. Then we have

(w, θ, F, u, p, q)0 ⊂ (w, θ, F, u, p, q) ⊂ (w, θ, F, u, p, q)∞.

Proof. The inclusion (w, θ, F, u, p, q)0 ⊂ (w, θ, F, u, p, q) is obvious. Now, let
x = (xk) ∈ (w, θ, F, u, p, q) then

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk)))]
pk → 0, uniformly in m.

Now by using (1.1) and the properties of modulus function, we have

sup
r,m

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk)))]
pk = sup

r,m

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk − L+ L)))]pk

≤ D sup
r,m

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk − L)))]pk

+ D sup
r,m

1

hr

∑

k∈Ir

uk[fk(q(L))]
pk

≤ D sup
r,m

1

hr

∑

k∈Ir

[fk(q(tkm(xk − L)))]pk

+ Dmax{fk(q(L))
h, fk(q(L))

H}

< ∞.

Hence x = (xk) ∈ (w, θ, F, u, p, q)∞. This proves that

(w, θ, F, u, p, q) ⊂ (w, θ, F, u, p, q)∞.

�
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Theorem 3 Let p = (pk) be a bounded sequence of positive real numbers.
Then the space (w, θ, F, u, p, q)0 is a paranormed space with the paranorm
defined by

g(x) = sup
r,m

( 1

hr

∑

k∈Ir

uk[fk(q(tkm(xk)))]
pk
)

1
M
,

where M = max(1, supk pk).

Proof. Clearly g(−x) = g(x). It is trivial that tkmxk = 0 for x = 0. Hence we
get g(0) = 0. Since pk

M ≤ 1 and M ≥ 1, using the Minkowski’s inequality and
definition of modulus function, for each x, we have
(

1
hr

∑

k∈Ir

uk[fk(q(tkm(xk + yk)))]
pk
)

1
M

≤
( 1

hr

∑

k∈Ir

uk[fk(q(tkm(xk))) + fk(q(tkm(yk)))]
pk
)

1
M

≤
( 1

hr

∑

k∈Ir

uk[fk(q(tkm(xk)))]
pk
)

1
M

+
( 1

hr

∑

k∈Ir

uk[fk(q(tkm(yk)))]
pk
)

1
M
.

Now it follows that g is subadditive. Finally, to check the continuity of scalar
multiplication, let us take any complex number λ. By definition of modulus
function F, we have

g(λx) = sup
r,m

( 1

hr

∑

k∈Ir

uk[fk(q(tkm(λxk)))]
pk
)

1
M

≤ K
H
Mg(x),

where K = 1+ [|λ|] ([|λ|] denotes the integer part of λ). Since F is a sequence
of modulus functions, we have x → 0 implies g(λx) → 0. Similarly x → 0

and λ → 0 implies g(λx) → 0. Finally, we have for fixed x and λ → 0 implies
g(λx) → 0. �

Theorem 4 Let F ′ and F ′′ be any two sequences of modulus functions. For
any bounded sequences p = (pk) and t = (tk) of strictly positive real numbers
and for any two sequences of seminorms q1 and q2, we have
(i) (w, θ, F ′, u, p, q)Z ⊂ (w, θ, F ′oF ′′, u, p, q)Z;

(ii) (w, θ, F ′, u, p, q)Z ∩ (w, θ, F ′′, u, p, q)Z ⊂ (w, θ, F ′ + F ′′, u, p, q)Z;
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(iii) (w, θ, F, u, p, q1)Z ∩ (w, θ, F, u, p, q2)Z ⊂ (w, θ, F, u, p, q1 + q2)Z;

(iv) If q1 is stronger than q2 then (w, θ, F, u, p, q1)Z ⊂ (w, θ, F, u, p, q2)Z;

(v) If q1 equivalent to q2 then (w, θ, F, u, p, q1)Z = (w, θ, F, u, p, q2)Z;

(vi) (w, θ, F, u, p, q)Z ∩ (w, θ, F, u, t, q)Z ̸= ϕ.

Proof. It is easy to prove so we omit the details. �

Corollary 2.5. Let F = (fk) be a sequence of modulus functions. Then
(w, θ, u, q)Z ⊂ (w, θ, F, u, q)Z.

Proof. Let x = (xk) ∈ (w, θ, u, q)Z and ϵ > 0. We can choose 0 < δ < 1 such
that fk(t) < ϵ for every t ∈ [0,∞) with 0 ≤ t ≤ δ. Then, we can write

1
hr

∑

k∈Ir

uk[fk(q(tkm(xk − L)))]

=
1

hr

∑

k∈Ir,tkm(xk−L)≤δ

uk[fk(q(tkm(xk − L)))]

+
1

hr

∑

k∈Ir,tkm(xk−L)>δ

uk[fk(q(tkm(xk − L)))]

≤ max
{
fk(ϵ), fk(ϵ)

}

+ max
{
1, (2fk(1)δ

−1)
} 1

hr

∑

k∈Ir,tkm(xk−L)>δ

uk[fk(q(tkm(xk − L)))].

Therefore x = (xk) ∈ (w, θ, F, u, q)Z. This completes the proof of the theorem.
Similarly, we can prove the other cases. �

Theorem 5 Let F = (fk) be a sequence of modulus functions, if limt→∞

f(t)
t =

β > 0, then (w, θ, u, q)Z = (w, θ, F, u, q)Z.

Proof. By Corollary 2.5, we need only to show that (w, θ, F, u, q)Z ⊂ (w, θ, u, q)Z.

Let β > 0 and x ∈ (w, θ, F, u, q)Z. Since β > 0, we have f(t) ≥ βt for all t ≥ 0.

Hence

1

hr

∑

k∈Ir

uk[fk(q(tkm(xk − L)))] ≥ β

hr

∑

k∈Ir

uk(q(tkm(xk − L))).

Therefore, x ∈ (w, θ, u, q)Z. �
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Theorem 6 Let 0 < pk ≤ tk and
(

tk
pk

)

be bounded. Then

(w, θ, F, u, t, q)Z ⊂ (w, θ, F, u, p, q)Z.

Proof. Let x = (xk) ∈ (w, θ, F, u, t, q)Z. Let rk = uk[fk(q(tkmxk − L))]tk and
λk = (pktk

) for all k ∈ N so that 0 < λ ≤ λk ≤ 1. Define the sequences (uk) and
(vk) as follows:
For rk ≥ 1, let uk = rk and vk = 0 and for rk < 1, let uk = 0 and vk = rk.

Then clearly for all k ∈ N, we have rk = uk+vk, r
λk
k = uλk

k +vλkk , uλk
k ≤ uk ≤ rk

and vλkk = vλk. Therefore

1

hr

∑

k∈Ir

rλkk ≤ 1

hr

∑

k∈Ir

rk + [
1

hr

∑

k∈Ir

vk]
λ.

Hence x = (xk) ∈ (w, θ, F, u, p, q)Z. Thus (w, θ, F, u, t, q)Z ⊂ (w, θ, F, u, p, q)Z.

�

Theorem 7 Let θ = (kr) be a lacunary sequence. If 1 < lim infr qr ≤ lim
supr qr < ∞ then for any modulus function F, we have (w, F, u, p, q)0 =

(w, θ, F, u, p, q)0.

Proof. Suppose lim infr qr > 1 then there exist δ > 0 such that qr = ( kr
kr−1

) ≥
1+ δ for all r ≥ 1. Then for x = (xk) ∈ (w, F, u, p, q)0, we write

1
hr

∑

k∈Ir

uk[fk(q(tkm(x)))]
pk

=
1

hr

kr∑

k=1

uk[fk(q(tkm(x)))]
pk −

1

hr

kr−1∑

k=1

uk[fk(q(tkm(x)))]
pk

=
kr

hr

(

k−1
r

kr∑

k=1

uk[fk(q(tkm(x)))]
pk
)

−
kr−1

hr

(

k−1
r−1

kr−1∑

k=1

uk[fk(q(tkm(x)))]
pk
)

.

Since hr = kr − kr−1, we have kr
hr

≤ 1+δ
δ and kr−1

hr
≤ 1

δ . The terms

k−1
r

kr∑

k=1

uk[fk(q(tkm(x)))]
pk
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and kr−1

hr

(

k−1
r−1

kr−1∑

k=1

uk[fk(q(tkm(x)))]
pk
)

both converge to zero, uniformly in m

and it follows that

1

hr

∑

k∈Ir

uk[fk(q(tkm(x)))]
pk → 0,

as r → ∞ uniformly in m, that is, x ∈ (w, θ, F, u, p, q)0.

If lim supr qr < ∞, there exists B > 0 such that ηr < B for all r ≥ 1. Let
x ∈ (w, θ, F, u, p, q)0 and ϵ > 0 be given. Then there exists R > 0 such that
for every j ≥ R and all m.

Aj =
1

hj

∑

k∈Ij

uk[fk(q(tkm(x)))]
pk < ϵ.

We can also find K > 0 such that Aj < K for all j = 1, 2, · · · . Now let t be any
integer with kr−1 < t ≤ kr, where r > R. Then

t−1
∑t

k=1 uk[fk(q(tkm(x)))]
pk

≤ k−1
r−1

kr∑

k=1

uk[fk(q(tkm(x)))]
pk

= k−1
r−1

∑

k∈I1

uk[fk(q(tkm(x)))]
pk + k−1

r−1

∑

k∈I2

uk[fk(q(tkm(x)))]
pk

+ · · ·+ k−1
r−1

∑

k∈Ir

uk[fk(q(tkm(x)))]
pk

=
k1

kr−1
k−1
1

∑

k∈I1

uk[fk(q(tkm(x)))]
pk +

k2 − k1

kr−1
(k2 − k1)

−1
∑

k∈I2

uk[fk(q(tkm(x)))]
pk

+ · · ·+ kR − kR−1

kr−1
(kR − kR−1)

−1
∑

k∈IR

uk[fk(q(tkm(x)))]
pk

+ · · ·+ kr − kr−1

kr−1
(kr − kr−1)

−1
∑

k∈Ir

uk[fk(q(tkm(x)))]
pk

=
k1

kr−1
A1 +

k2 − k1

kr−1
A2 + · · ·+ kR − kR−1

kr−1
AR

+
kR+1 − kR

kr−1
AR+1 + · · ·+ kr − kr−1

kr−1
Ar
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≤ (sup
j≥1

Aj)
kR

kr−1
+ (sup

j≥R
Aj)

kr − kR

kr−1

≤ K
kR

kr−1
+ ϵB.

Since Kr−1 → ∞ as t → ∞, it follows that t−1
∑t

k=1 uk[fk(q(tkm(x)))]
pk → 0

uniformly in m and consequently x ∈ (w, F, u, p, q)0. �

3 Statistical convergence

The notion of statistical convergence was introduced by Fast [12] and Schoen-
berg [28] independently. Over the years and under different names, statistical
convergence has been discussed in the theory of Fourier analysis, ergodic the-
ory and number theory. Later on, it was further investigated from the sequence
space point of view and linked with summability theory by Fridy [14], Connor
[10], Salat [25], Murasaleen [21], Isik [15], Savas [27], Malkosky and Savas [20],
Kolk [16], Maddox [18, 19] and many others. In recent years, generalizations of
statistical convergence have appeared in the study of strong integral summa-
bility and the structure of ideals of bounded continuous functions on locally
compact spaces. Statistical convergence and its generalizations are also con-
nected with subsets of the Stone-Cech compactification of natural numbers.
Moreover, statistical convergence is closely related to the concept of conver-
gence in probability. The notion depends on the density of subsets of the set
N of natural numbers.
A subset E of N is said to have the natural density δ(E) if the following limit

exists: δ(E) = limn→∞

1
n

∑n
k=1 χE(k), where χE is the characteristic function of

E. It is clear that any finite subset of N has zero natural density and δ(Ec) =

1− δ(E).
Let θ be a lacunary sequence, then the sequence x = (xk) is said to be

q-lacunary almost statistically convergent to the number L provided that for
every ϵ > 0,

lim
r→∞

1

hr
|{k ∈ Ir : q(tkm(x− L)) ≥ ϵ}| = 0, uniformly in m.

In this case we write [Sθ]q − lim x = L or xk → L([Sθ]q) and we define

[Sθ]q =
{
x ∈ w(X) : [Sθ]q − lim x = L, for some L

}
.

In the case θ = (2r), we shall write [S]q instead of [Sθ]q.
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Theorem 8 Let F = (fk) be a sequence of modulus functions and 0 < h =

infk pk ≤ pk ≤ supk pk = H < ∞. Then (w, θ, F, u, p, q) ⊂ [Sθ]q.

Proof. Let x ∈ (w, θ, F, u, p, q) and ϵ > 0 be given. Then

1

hr

∑

k∈Ir

uk[fk(q(tkm(x− L)))]pk

≥ 1

hr

∑

k∈Ir,q(tkm(x−L))≥ϵ

uk[fk(q(tkm(x− L)))]pk

≥ 1

hr

∑

k∈Ir,q(tkm(x−L))≥ϵ

uk[fk(ϵ)]
pk

≥ 1

hr

∑

k∈Ir,q(tkm(x−L))≥ϵ

min(uk[fk(ϵ)]
h, uk[fk(ϵ)]

H)

≥ 1

hr
|{k ∈ Ir : q(tkm(x− L)) ≥ ϵ}|min(uk[fk(ϵ)]

h, uk[fk(ϵ)]
H).

Hence x ∈ [Sθ]q. �

Theorem 9 Let F = (fk) be a bounded sequence of modulus functions and
0 < h = infk pk ≤ pk ≤ supk pk = H < ∞. Then [Sθ]q ⊂ (w, θ, F, u, p, q).

Proof. Suppose that F = fk is bounded. Then there exists an integer K such
that fk(t) < K, for all t ≥ 0. Then

1

hr

∑

k∈Ir

uk[fk(q(tkm(x− L)))]pk =
1

hr

∑

k∈Ir,q(tkm(x−L))≥ϵ

uk[fk(q(tkm(x− L)))]pk

+
1

hr

∑

k∈Ir,q(tkm(x−L))<ϵ

uk[fk(q(tkm(x− L)))]pk

≤ 1

hr

∑

k∈Ir,q(tkm(x−L))≥ϵ

max(Kh, KH)

+
1

hr

∑

k∈Ir,q(tkm(x−L))<ϵ

uk[fk(ϵ)]
pk

≤ max(Kh, KH)
1

hr
|{k ∈ Ir : q(tkm(x− L)) ≥ ϵ}|

+ max(uk[fk(ϵ)]
h, uk[fk(ϵ)]

H).
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Hence x ∈ (w, θ, F, u, p, q). �

Theorem 10 [Sθ]q = (w, θ, F, u, p, q) if and only if F = (fk) is bounded.

Proof. Let F = (fk) be bounded. By the Theorem 3.1 and Theorem 3.2, we
have

[Sθ]q = (w, θ, F, u, p, q).

Conversely, suppose that F is unbounded. Then there exists a positive sequence
(tn) with f(tn) = n2, n = 1, 2, · · · .
If we choose

xk =

{
tn, k = n2, n = 1, 2, · · · ,
0, otherwise

.

Then we have
1

n
|{k ≤ n : |xk| ≥ ϵ}| ≤

√
n

n
→ 0, n → ∞.

Hence xk → 0([Sθ]q) for t0m(x) = xm, θ = (2r) and q(x) = |x|, but x /∈
(w, θ, F, u, p, q). This contradicts to [Sθ]q = (w, θ, F, u, p, q). �

References

[1] Y. Altin, M. Et, Generalized difference sequence spaces defined by a mod-
ulus function in a locally convex space, Soochow J. Math., 31 (2005),
233–243.

[2] H. Altinok, Y. Altin, M. Isik, The sequence space Bvσ(M,p, q, s) on semi-
normed spaces, Indian J. Pure Appl. Math., 39, 1 (2008), 49–58.

[3] Y. Altin, Properties of some sets of sequences defined by a modulus func-
tion, Acta Math. Sci. Ser. B Engl. Ed., 29, 2 (2009), 427–434.
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