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Abstract. In the present paper we introduce some multiplier sequence
spaces defined by a sequence of modulus functions F = (f ). We also make
an effort to study some topological properties and inclusion relations
between these spaces.

1 Introduction and preliminaries

A modulus function is a function f: [0, 00) — [0, 00) such that

1. f(x) =0 if and only if x =0,

2. f(x +y) < f(x) + f(y) for all x >0,y >0,
3. f is increasing,
4

. f is continuous from right at 0.
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It follows that f must be continuous everywhere on [0,00). The modulus
function may be bounded or unbounded. For example, if we take f(x) = 37,
then f(x) is bounded. If f(x) = xP, 0 < p < 1, then the modulus f(x) is
unbounded. Subsequently, modulus function has been discussed in [1], [2], [3],
[4], [5], [20], [22], [23], [24], [26] and references therein.

Let X be a linear metric space. A function p : X — R is called paranorm, if
1. p(x) >0, for all x € X,
2. p(—x) =p(x), for all x € X,
3. p(x+y) <plx)+ply), for all x,y € X,

4. if (An) is a sequence of scalars with Ay, — A as n — oo and (xn) is a
sequence of vectors with p(xn—x) — 0 asn — oo, then p(Ayxn —Ax) —
0 asm — oo.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X,p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [29],
Theorem 10.4.2, P.183).

Let w denote the set of all real sequences x = (x,). By {s and c, we denote
respectively the Banach space of bounded and the Banach space of convergent
sequences X = (xn ), both normed by ||x|| = supy, [xn|. A linear functional £ on
s is said to be a Banach limit (see [6]) if it has the properties :

L. L(x) > 0if x >0 (i.e. xn >0 for all n),
2. L(e) =1, where e = (1,1,---),
3. L(Dx) = L(x),

where the shift operator D is defined by (Dxn) = (xn11)-

Let B be the set of all Banach limits on {y,. A sequence x is said to be almost
convergent to a number L if £(x) = L for all £ € B. Lorentz [17] has shown
that x is almost convergent to L if and only if

Xm + Xm41 + -+ Xk
tiem = tiem (X) = = m+k+1 s

— L as k — oo, uniformly in m.

Let € denote the set of all almost convergent sequences. Maddox [18] and
(independently) Freedman et al. [13] have defined x to be strongly almost
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convergent to a number L if

k
1 . .
K1 Z [xizm — L| — 0 as k — oo, uniformly in m.
i=0
Let [€] denote the set of all strongly almost convergent sequences. It is easy
to see that [¢] C € C o. Das and Sahoo [11] defined the sequence space

n
w(p)] = {x EwW: L Z [tkm (x — L)[P* — 0 as n — oo, uniformly in m.}
n+1 =

and investigated some of its properties.

The space of lacunary strong convergence have been introduced by Freedman
et al. [13]. A sequence of positive integers 0 = (k;) is called ”lacunary” if
ko = 0,0 < ky < kyy1 and hy = ky — k1 — 00, as ¥ — oo. The intervals
determined by 0 are denoted by I, = (k,_1,k;] and the ratio kl:; will be
denoted by ;. The space of lacunary strongly convergent sequences Ng is
defined by Freedman et al. [13] as follows:

o1
Ng = {x = (x;) Tgrgoh—r Z |x;i —s| =0, for some s}.

iel,

Lacunary sequence spaces were studied by many authors (see [7], [8], [9]) and
references therein.

Let F = (fx) be a sequence of modulus functions, p = (px) be a bounded
sequence of positive real numbers, u = (uy) be any sequence of strictly posi-
tive real numbers and X be a seminormed space over the field C of complex
numbers with the seminorm q. By w(X) we denote the space of all sequences
x = (xk) for all k. In the present paper we define the following classes of se-
quences:

(Wa G,F, u,p, q) = {X = (Xk) S W(X) : lim l Z Uk [fk(q(tkm(X—L)))]pk = O)

T—00 T
kel

uniformly in m, for some L},

(w,0,Fu,p, qlo = {x = () € wiX) : lim = 3 we[flaltim)] ™ =0,
T kelr

uniformly in m}
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and

(w,0,Fy 10,y @)oe = 1= () € w0 sup - 3 awefelaltin ()] ™ < 00}

r,m Ny kel

If we take f(x) = x, we have

(W> e»uap) q) = {X = (Xk) S W(X) : rll{go l Z Uy [(q(tkm(x _ L)))}pk =0,
" kel

uniformly in m, for some L},
Pr
(W>9»U»P,Q)o = {X: (X ) rligloi Zuk[ tkm )] :0>
kely
uniformly in m}

and

1 Px
(W,0,1, P, Ao = {x = (i) € W) ssup o= Y i (@ltim ()] < o0 .
rom Ny el
If we take p = (px) = 1 for all k € N, we have

1
(w,0,Fru,q) = {x = () € w(X) : lim o 3w [flaltmtx—L))] =0,

uniformly in m, for some L},
(w,8,F 1, q)o = {x = (x) € w(X) : lim - Z we filalten(x)))] =0,
kelr
uniformly in m}

and

(w,0,Fy 1t qJoo = {x = (x4) € WX) ssup 2 3wy [l (tim(x)))] < 00}

rym Ny kel

If we take f(x) =x and u = (u) = 1 for all k € N, we have

(w,8,p,q) = {x = (xx) € w(X) : lim i > [(q(tkm(x— L)))]pk =0,

T—00 T el
T
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uniformly in m, for some L},

(w,0,py o = {x = (w) € w(X) s lim - b [(a(tmon] ™ =0,

uniformly in m}

and

(w,0,9, @)oo = {x = () € W00 sup - 3 [(aten())] ™ < o0}
DT el

If we take 6 = (27), then the spaces (w,0,Fu,p,q), (w,0,Fu,p,q)o and
(W) 9) F) u,p, q)oo reduces to (Wa F) u, p, q)v (Wa F) u, p, Q)O and (Wa F) u, p, q)oo
Throughout the paper Z will denote the 0,1 or co. The following inequality
will be used throughout the paper. If 0 < h = infpy < px < suppx = H,
D = max(1,2""1) then

lax + by[P* < D{lay[P* + [by[P*} (1)

for all k and ay, by € C. Also |aPx < max(1,|a/™) for all a € C.

In this paper we study some topological properties and prove some inclusion
relations between above defined classes of sequences.

2 Main results

Theorem 1 Let F = (fy) be a sequence of modulus functions, w = (uy) be any
sequence of strictly positive real numbers and p = (px) be a bounded sequence
of positive real numbers. Then (w, 0, Fu,p,q)z are linear spaces over the field
of complex numbers C.

Proof. We shall prove the result for Z = 0. Let x = (xx),y = (yx) €
(w,0,Fu,p,q)o and «,3 € C. Then there exist integers My and Ng such
that |a] < My and [B| < Ng. By using inequality (1.1) and the properties of
modulus function, we have

1
— ) welfi(q(tian (0 + Byi))IPE - < = D wilfi(g(octimxi + Biomyi)) P
kel, T kel,

Do Y weMafi(a(tion (i) P

T kel,

IN
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+ D ZukNrsfk(Q(tkm(yk)))]pk

keIr

< DMH Z wic[fi (q(tiem (xx) ) )IP*
T el

+ Z Wi [fie(q (tiem (Yx)))IP*
T el

— 0, uniformly in m.

This proves that (w,0,Fu,p,q)o is a linear space. Similarly, we can prove
that (w,0,Fu,p,q) and (w,0, Fu,p, q)e are linear spaces. O

Theorem 2 Let F = (fy) be a sequence of modulus functions. Then we have
(W) ea F) w,p, q)O - (W) e) F)u)p) q) - (W) 9) F) u,p, q)oo

Proof. The inclusion (w,0,Fu,p,q)o C (w,0,Fu,p,q) is obvious. Now, let
x = (xx) € (w,0,Fu,p,q) then

P Z Wi [fie(q(tiem (xk)))IP* — O, uniformly in m.

Now by using (1.1) and the properties of modulus function, we have
sup - Z wi[fi(q(tiem () ))IPE - = sup - Z i [fic(q(tiem (i — L+ L)))IP*
T kel, T kel,

Dsup— 3 i lfilqtion (s — L)

nm T kely

IN

+ Dsup o Y wlflq(L)P

nm T kely

Dsup - 3 [fulq(tin (06 — L))
BT el
+ D max{fi(q(L))" fi(q(L)"}

< oQ.

IN

Hence x = (x¢) € (W, 0,F,u,p, q)oo- This proves that

(W) e’ F)u)p) q) C (W’ 6) F) u’p’ q)OO
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Theorem 3 Let p = (px) be a bounded sequence of positive real numbers.
Then the space (w,0,Fu,p,qlo is a paranormed space with the paranorm
defined by

g(x)—sup(h > welfilqltin (i) )

kel

where M = max(1, supy px)-

Proof. Clearly g(—x) = g(x). It is trivial that tymxx = 0 for x = 0. Hence we
get g(0) = 0. Since k& < 1 and M > 1, using the Minkowski’s inequality and

definition of modulus function, for each x, we have
1

) wlfilqtiom (e + Uk)))]pk> ”
kel

1

< (i X welflaltion %)) + felltin (1) ™

T kel,
< (i X welflaltonx0)P) ™ + (0 3 welfila(tun (17
T kel, kelr

Now it follows that g is subadditive. Finally, to check the continuity of scalar
multiplication, let us take any complex number A. By definition of modulus
function F, we have

1

g(x) = sup( =3 i@t (i) 7)™
T xelr

< Kwmg(x),

where K =1+ [A]] ([Al] denotes the integer part of A). Since F is a sequence
of modulus functions, we have x — 0 implies g(Ax) — 0. Similarly x — 0
and A — 0 implies g(Ax) — 0. Finally, we have for fixed x and A — 0 implies
g(Ax) — 0. O

Theorem 4 Let F' and F” be any two sequences of modulus functions. For
any bounded sequences p = (px) and t = (tx) of strictly positive real numbers
and for any two sequences of seminorms qi and qz, we have

(7') (W) e) F/>U»Pa CI)Z - (W) e) FIOFHa u,p, q)Z;

(ii) (W) e) F/>u)p) q)Z N (W> 9, F”) U, P, q)Z - (W) 9, F'+ F//,U.,]:), q)Z;
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(iii) (W) e)Fa w,p, q1)Z N (W) ea F) u,p, qZ)Z C (Wa e>F> w,p,qr + qZ)Z;

(iv) [f qi is stronger than q2 then (W,G,F,U,p, q])Z - (W) 0, F, u,p, qZ)Z;
(v) If q1 equivalent to qz then (w,0,Fu,p,q1)z = (W, 0,Fu,p,q2)z;
(’UZ) (W> e)Fa u,p, q)Z N (W) 6)F>u) t) q)Z 7é (I)

Proof. It is easy to prove so we omit the details. O

Corollary 2.5. Let F = (fy) be a sequence of modulus functions. Then
(W) 0,1, CI)Z C (W) 0, Fu, CI)Z
Proof. Let x = (x¢) € (W, 0,u,q)z and € > 0. We can choose 0 < 6 < 1 such
that fi(t) < € for every t € [0,00) with 0 < t < 6. Then, we can write

> welfi(q(tim(ac— 1))

kel

1
= — Y wdlfqltmbe— 1)

T kel tm (xk—L) <5

LY - L))

T kel tiom (xi—L)>5

max {fi(e), fi(e) |

foma L0085 Y wdidaltobe— D))

T k€l b (X —L)>6

IA

Therefore x = (x¢) € (w, 0, Fu, q)z. This completes the proof of the theorem.
Similarly, we can prove the other cases. O

Theorem 5 Let F = (fy) be a sequence of modulus functions, if limy_, o @ =

B >0, then (w,0,u,q)z = (W,0,Fu,q)z.

Proof. By Corollary 2.5, we need only to show that (w, 0, Fu,q)z C (w,0,u,q)z.
Let B > 0 and x € (w,0,Fu,q)z. Since 3 > 0, we have f(t) > pt for all t > 0.
Hence

*Zuk fi(q(tem (3 — L Zuk (tiem (i — L))).
T kel, " kel

Therefore, x € (w,0,u,q)z. 0
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Theorem 6 Let 0 < px < tx and ( ) be bounded. Then
(w,0,FRu,t,q)z C (w,0,Fu,p,q)z.

Proof. Let x = (xx) € (W, 0,Fu,t,q)z. Let 1 = w[fi(q(tkmxx — L))]* and
Ak = (%‘z) for all k € N so that 0 < A < Ax < 1. Define the sequences (uy) and
(vy) as follows:

For ry > 1, let w = ¢ and vy = 0 and for 1 < 1, let ux = 0 and v = 1y.
Then clearly for all k € N, we have 1, = wy +vy, rﬁ = U.kk +v uﬁk <u <71
and vk —vk Therefore

— rﬁk < — rk+ vt
h

T xelr kel T xel,

Hence x = (xx) € (w,0,Fu,p,q)z. Thus (w,0,Fu,t,q)z C (w,0,Fu,p,q)z.
O

Theorem 7 Let © = (k) be a lacunary sequence. If 1 < liminf, q, < lim
sup, qr < oo then for any modulus function F, we have (w,Fu,p,q)o =
(Wa 6, F) u, p, q)O

Proof. Suppose liminf, g, > 1 then there exist & > 0 such that q, = (kki] ) >
146 for all r > 1. Then for x = (xx) € (W, Fu,p, q)o, we write

> wilfi(qtm (x)))1P

kel,
Ky—1
= —Zukfk (bGP — 1 3 i@t ()P
T k=1
= }]%( Zukfk )))]p“> ( Zukfk (trm (x )))]p")-

Since h; = k; — k,_1, we have % < ]%5 and k{;‘

< %. The terms

o Zuk fie(q(tim (x)))IP*
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and kr" (kf Z w[fx(q )))]pk> both converge to zero, uniformly in m

and it follows that

*Zukfk (tim (x)))IP* — 0,

kelr

as r — oo uniformly in m, that is, x € (w, 0, F,u,p, q)o.

If limsup, qr < oo, there exists B > 0 such that n, < B for all v > 1. Let
x € (w,0,Fu,p,q)o and € > 0 be given. Then there exists R > 0 such that
for every j > R and all m.

Zukfk (tem (X)))IP* <e.

h kel

We can also find K > 0 such that Aj <K for all j =1,2,--- . Now let t be any
integer with k,_1 <t < k;, where r > R. Then

! Z;[{:] uk[fk(q (tkm(x) ) )]pk

< r1ZU-kfk (tiem (x)))IP*

= Zukfk (tem DI + K Y wilfie(g(tem (x)))1P

kely kel
+ -|-k 11 Zuk fk tkm )))]
kelr
_ —1 Z U fk tkm )))]Pk + M k _ k] Z Uk fk tkm
krfl
kely kel,
kg — Kr-1 —1 P
+ e _|_ ki(kR — kR—]) Z uk[fk(q(tkm(x)))]
1 kelg
kr —k
X +k7] )7 wklfilq(tian (x)) 1P
T—1 kel
k1 ky — kg Kr — kg1
_ MaL Mgt oo+ SRR p
K1 ! k1 Kr1 "
keo1 —k ky — ke
+ MAR+]+...+T7T]Ar

kr—]

x)))IPx
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k kr —k
< (supAj) R + (sup Aj) R
i>1 1 >R K1
kg
< K + €B.
K1

Since K, — 0o as t — oo, it follows that t~! Zi:] Wi [fie(q(tem(x)))IPx — 0
uniformly in m and consequently x € (w, F,u,p, q)o- O

3 Statistical convergence

The notion of statistical convergence was introduced by Fast [12] and Schoen-
berg [28] independently. Over the years and under different names, statistical
convergence has been discussed in the theory of Fourier analysis, ergodic the-
ory and number theory. Later on, it was further investigated from the sequence
space point of view and linked with summability theory by Fridy [14], Connor
[10], Salat [25], Murasaleen [21], Isik [15], Savas [27], Malkosky and Savas [20],
Kolk [16], Maddox [18, 19] and many others. In recent years, generalizations of
statistical convergence have appeared in the study of strong integral summa-
bility and the structure of ideals of bounded continuous functions on locally
compact spaces. Statistical convergence and its generalizations are also con-
nected with subsets of the Stone-Cech compactification of natural numbers.
Moreover, statistical convergence is closely related to the concept of conver-
gence in probability. The notion depends on the density of subsets of the set
N of natural numbers.

A subset E of N is said to have the natural density §(E) if the following limit
exists: 6(E) = limp 00 % ZE:1 Xk (k), where x is the characteristic function of
E. It is clear that any finite subset of N has zero natural density and 8(E€) =
1—5(E).

Let © be a lacunary sequence, then the sequence x = (xy) is said to be
g-lacunary almost statistically convergent to the number L provided that for
every € > 0,

r—oo h

1
lim —|{k € I : q(txm(x — L)) > €}| = 0, uniformly in m.
T
In this case we write [Sg]q —limx = L or x, — L([Selq) and we define
(Selq = {x € w(X) : [Selq —limx = L, for some L}.

In the case 0 = (27), we shall write [S]4 instead of [Se]q.
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Theorem 8 Let F = (fy) be a sequence of modulus functions and 0 < h =
infy px < px < supy, px = H < oo. Then (w,0,Fu,p,q) C [Selq-

Proof. Let x € (w,0,Fu,p,q) and € > 0 be given. Then

— Z i [fic(q (tam (x — L)))JP*
kEIr

> LY gt — D))

T kely,q(tim (x—1)) ¢

1
> " Z u[fi (e)]P*
kEIr»Q(tkm(X—U)Z€
> LY minwlfle), wl(e)

T K€Ly, qltim (x—1))>e

> ik e Lo qlton(x— 1)) > o)l minfuglfile), usdfi(e)]")
Hence x € [Selg- O

Theorem 9 Let F = (fy) be a bounded sequence of modulus functions and
0 < h =infypx < pr < sup px = H < oo. Then [Selq C (W, 0,Fu,p, q).

Proof. Suppose that F = fy is bounded. Then there exists an integer K such
that fi(t) < K, for all t > 0. Then

1
— Z ulfi(q(tim(x = L)))IP = T > i [fic(q(tiem (x — L)))IP*
kel k€l ,q(tkm (x—L))>e€
LY wldqltex - D)™

T kel q(tim (x—L))<e

1

— Z max (K", KH)
" Kel,qtim (x—L))>e

b Y wiidom

T Kelq(tim (x—L))<e

IN

IN

max (K", KH)hll{k € I q(tim(x — L)) > €}

+  max(ufi(e)]™, we[fi(e)]M).
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Hence x € (w,0,Fu,p, q). O

Theorem 10 [Sglq = (W, 0,Fu,p, q) if and only if F = (fy) is bounded.

Proof. Let F = (fx) be bounded. By the Theorem 3.1 and Theorem 3.2, we
have

[Se]q = (W) 93F3u>p> CI)
Conversely, suppose that F is unbounded. Then there exists a positive sequence
(tn) with f(tp) =n%,n=1,2,---.
If we choose
tn, k=n’n=12---,
Xk = . .
0, otherwise

Then we have
1
Le<n bl > e < Y™ S o,m oo
n

Hence xx — 0([Selq) for tom(x) = xm,0 = (27) and q(x) = |x|, but x ¢
(w, 0, F,u,p, q). This contradicts to [Selq = (W, 0, Fu,p, q). O
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