
Acta Univ. Sapientiae, Informatica, 1, 1 (2009) 35–44

Automated subtree construction in a

contracted abstract syntax tree

Róbert Kitlei
Faculty of Informatics,

Eötvös Loránd University,
Pázmány Péter sétány 1/c,
H–1117 Budapest, Hungary

email: kitlei@elte.hu

Abstract. Syntax trees are commonly used by compilers to represent
the structure of the source code of a program, but they are not convenient
enough for other tasks. One such task is refactoring, a technique to
improve program code by changing its structure [7].

In this paper, we shortly describe a representation of the abstract
syntax tree (AST), which is better suited for the needs of refactoring.
This is achieved by contracting nodes and edges in the tree. The rep-
resentation serves as the basis of the back-end of a prototype Erlang
refactoring tool [8], however, it is adaptable to languages different than
Erlang [2].

We introduce a method that helps us automatically generate syntac-
tically correct subtrees. Since refactorings often have to create new parts
of the tree, it is essential to make this task as convenient as possible.

1 Introduction

Syntax trees are usually created by parsers, which operate on tokens that
are produced by a scanner directly from the source code, with possibly a
preprocessing phase inserted. Most of the time, these syntax trees are used
once – possibly the syntax tree is never constructed in its entirety, as is the

AMS 2000 subject classifications: 68P05 subtree construction
CR Categories and Descriptors: D.2.10. [Software]: Software engineering – Represen-

tation;
Key words and phrases: subtree construction

35



36 R. Kitlei

case with top-down and bottom-up parsers. However, in some cases the full
syntax tree is needed. One such example is refactoring.

Refactoring is the systematic changing of source files while retaining the se-
mantics of the code. Some refactorings, e.g. renaming a variable or a function,
do not change the shape of the syntax tree, only update the information in the
nodes, while others, e.g. extracting a function, do delete, move or insert new
nodes or subtrees in the syntax tree. Since deletion does not pose a problem,
and moving a subtree is equivalent to its removal and reinsertion, the most
intriguing question of the above is the creation and insertion of new subtrees.

In addition to the above, refactorings have to gather additional informa-
tion about semantic aspects of the source code as well. Since these bits of
information can only be collected by visiting diverse parts of a syntax tree,
syntax trees make inappropriate and inefficient representations for refactor-
ings. A graph representation is proposed by the Erlang refactoring group at
the university ELTE (Budapest, Hungary). The ELTE group proposed this
representation after previous experience with refactoring [5, 8]. Details about
the representation and the refactoring tool are found in [4].

The structure of the paper is as follows. In section 2, the graph represen-
tation is described to such depth as is necessary for understanding the rest
of the paper. Section 3 describes a method that facilitates the creation and
insertion of new subtrees. This method is the main contribution of the paper.
Section 4 lists related work, and section 5 gives acknowledgements.

2 Representation structure

2.1 Node and edge contractions

ASTs built on top of source codes are typically created by compilers in com-
pilation time. Such syntax trees are discarded after they have been used, and
their construction does not involve complex traversals: they follow the con-
struction of the tree. There are, however, applications in which the role of
ASTs are augmented. In refactoring, for example, tree traversals are exten-
sively used, because a lot of information is required that can be acquired from
different locations.

In order to facilitate these traversals, a new representation of the AST was
introduced, which is described in detail in [4]. Here we give an overview of the
relevant parts of the representation.

ASTs inherently involve parts that are unnecessary for information collec-
tion, or are structured so that they make it more tedious. One obvious case



Automated subtree construction 37

if

X == 1 -> Y = 2;

true -> Y = 3

end

Figure 1: If clauses in Erlang.

to_list(Text) when is_atom(Text) -> atom_to_list(Text);

to_list(Text) when is_integer(Text) -> integer_to_list(Text);

to_list(Text) when is_float(Text) -> float_to_list(Text);

to_list(Text) when is_list(Text) -> Text.

Figure 2: Function clauses with guards.

is that of chain rules: the information contained in them could be expressed
as a single node, yet the traversing code has to be different for each node that
occurs on the way.

Another case can be described by their functionality: the edges of the nodes
can be grouped so that one traversal should follow exactly those that are in one
group. To give a concrete example, clauses in Erlang have parameters, guard
expressions and a body, and there are associated tokens: parentheses and an
arrow. Yet the actual appearance of the clauses can be vastly different, see
Figures 1 and 2. When collecting information, often either all parameters or
all guard expressions are required at a time during a traversal pass, but seldom
both at the same time of the traversal. Therefore, it is natural to partition
the edges into groups along their uses. Since the partitions depend on the
traversals used, the programmer has to decide by hand how groups should be
made. This way, only as few groups have to be introduced as needed in a
given application.

Another way to make the representation more compact is to contract repe-
titions. Repetitions are common constructs in programming languages: they
are repeated uses of a rule with intercalated tokens as separators. Instead
of having a slanted tree as constructed by an AST, it is more convenient for
traversal purposes to represent them by a parent node with all of the repeated
nodes and the intermediate tokens as its children. As a matter of fact, in the
example in the above paragraph the parameters and guard expressions are



38 R. Kitlei

already a result of such a contraction.
Having done the above contractions has two main advantages. One is that

much fewer cases have to be considered. In the case of Erlang, the gram-
mar contained 69 nonterminals, which was reduced to three contracted node
groups: forms, clauses and expressions.

Expr

Expr

1
Rest

Token

comma

Expr

2
Rest

Token

comma

Expr

3

(a) AST.

expr

Token

comma

elex/1

Token

comma

elex/2

expr

1

sub/1

expr

2

sub/2

expr

3

sub/3

(b) Contracted AST.

Figure 3: Repetition in the expression 1+2+3.

A further advantage of contractions is that they enable introducing queries,
which makes traversals even more effective. Queries can be further optimised
by automatically adding semantic nodes and edges to the contracted AST,
which make it a graph. In addition, the prototype tool also supports pre-
processor constructs. Queries, semantic nodes and edges and preprocessor
handling are described in detail in [4].

Since the contraction groups are different for each language (and may even
differ in each application, depending on the needed level of detail), it is impor-
tant that the approach should be adaptable to a wide range of grammars. For
this reason, an XML representation was chosen for describing the grammar
rules, the contraction groups and the edge labels. The scanner and parser are
automatically generated from this file. The contracted structure is immedi-
ately constructed during parse time, and not converted from an AST.



Automated subtree construction 39

2.2 Representation of the contracted AST

The inner nodes of the contracted AST are the contracted nodes, which also
contain the originating nonterminal as information. The leaf nodes of the con-
tracted AST are the tokens, which contain the token text and the whitespace
before and after the token. The nodes are connected by labelled edges; the
labels determine the contraction classes they can connect.

Contractions do not fully preserve edge ordering: order is preserved only
between the edges with the same label, not between different labels. This is
why the original AST cannot be restored easily: in Figure 4 it is not possible
to determine whether the tokens of the clause come before, after or in between
the expressions. To make it possible, more information about the structure of
the contracted nodes is needed.

The lack of order between label groups is the result of using a database for
storage, which is required for fast queries. However, it is expected to be a
good trade-off, since the exact AST order of the nodes is seldom needed (most
importantly, when reprinting the contents of the graph into a file), while it
provides queries in linear time of their length. The order of the links with the
same label, which is important during queries, is retained.

3 Construction of new AST subtrees

One possible solution for constructing AST subtrees would be to use the parser
itself by providing the source code of the desired subtree – effectively, its front.
This approach would require the user to manually fill in all the punctuation,
and would require separate grammars for each nonterminal to be generated.

In this section, a different method is presented that makes constructing
syntactically correct AST subtrees comfortable for the user. In section 3.1,
structures are defined that describe the expected structure of a node (the node
skeleton). The method itself is described in section 3.2.

3.1 Node structure skeletons

The grammar description chosen is close to a BNF description. In it, the
grammar rules are grouped by what contraction group their head belongs to.
Rules, of course, may have more alternatives. The right hand sides of rules
consist of a sequence of the following:

• tokens that contain the token node label,



40 R. Kitlei

clause

funcl

token

(

clex/1

token

)

clex/2

token

->

clex/3

expr

body/1

expr

pattern/1

expr

name/1

integer

1

elex/1

integer

1

elex/1

atom

f

elex/1

(a) Part of an automatically printed contracted AST. The
order of the edges between groups in unknown.

clause

funcl

expr

name/1

token

(

clex/1

expr

pattern/1

token

)

clex/2

token

->

clex/3

expr

body/1

atom

f

elex/1

integer

1

elex/1

integer

1

elex/1

(b) The nodes rearranged in the right order. The order
within the groups is retained. The tokens read: f(1) ->

1.

Figure 4:

• symbols that contain the child symbol’s nonterminal and the edge label,

• optional constructs, sequences that either appear or not in a concrete
instance and

• repeat constructs that contain a symbol and a token; its instances are



Automated subtree construction 41

several (at least one) symbols with tokens intercalated.

We will such sequences node structure skeletons. Since optionals and repeats
may contain one another, we shall refer to the number of contained nestings
as the depth of the construct.

As an example that contains both constructs described above, let us examine
the structure of lists. The structure of lists is described as follows. Lists start
with an opening bracket token and end with a closing bracket token. Between
them is an optional construct. The optional part consists of a repeat construct.
The repeat construct uses comma tokens to separate symbols that are linked
using “sub” edges from the parent node. The portion of the actual Erlang
code that shows the above structure is shown in figure 5 in order to have a
more concise overview.

[{token,"op_bracket"},

{optional,[{repeat,"comma","sub"}]},

{token,"cl_bracket"}];

Figure 5: The structure of lists as an Erlang structure used in the actual
implementation. Slightly abridged.

Lists can be empty lists, or lists containing expression symbols separated
by comment tokens. In the first case, the optional part is not present. In
the second case, the optional is present. If there is one element in the re-
peat construct, there is exactly one symbol element present which denotes the
expression.

[
︸︷︷︸

token

︸︷︷︸

empty optional

]
︸︷︷︸

token

[
︸︷︷︸

token

1
︸︷︷︸

repeat in optional

]
︸︷︷︸

token

[
︸︷︷︸

token

1, 2, 3, 4, 5, 6, 7, 8 + 9, f()
︸ ︷︷ ︸

repeat in optional

]
︸︷︷︸

token



42 R. Kitlei

3.2 Automated subtree construction

From the XML grammar description, node structure skeletons are automati-
cally generated for each node type.

The user has to supply two pieces of information for the node creation
algorithm. One is the contents of the newly created node, which also contains
its type. By supplying the type of the node, the relevant node structure
skeleton can be determined. The other piece of information to be supplied is
a description of the desired actual content of the new node. This parallels the
structure of the skeleton in the following way.

1. Almost all tokens are automatically created; these tokens are not in-
cluded in the description. Information about tokens that cannot be
automatically created, e.g. names of functions, have to be present.

2. Symbol, optional and repeat descriptions are at corresponding positions
with the skeleton.

3. Symbol descriptions contain the actual node to be incorporated as a
child. As stated before, they are either created before or moved from a
different position in the tree.

4. Repeat descriptions contain the actual symbol nodes. The tokens of
repeat constructs are always autocreated, therefore they need not be
specified in the description.

5. Optional descriptions are either no optional, or they contain sequential
content that parallels that of the optional in the skeleton.

The algorithm used to construct a contracted node processes the sequence
in the skeleton along with the one in the description.

1. If the next construct is an autocreated token, it does not appear in the
description, because it can be automatically created. The created token
link from the parent to the depends only on the contracted type of the
parent node. Note that all other constructs have to be present both in
the skeleton and the description.

2. If the next construct is a (not autocreated) token or a symbol, the cor-
responding description item contains the node itself to be linked from
the parent.



Automated subtree construction 43

3. If the next construct is a repeat, the token nodes are autocreated and
linked as above, and the symbols to be linked are listed in the repeat
description. Since the representation is contracted, the insertions of the
symbols and tokens below the parent do not have to be intercalated, as
their connecting edges are in different label groups.

4. If the next construct is an optional, but the description contains
no optional, it is skipped.

5. If the next construct is an optional, and the description has actual con-
tent, the contentsof the optional skeleton and description are processed.

Subtrees can be created by repeated use of the above algorithm. When
constructing a new node, previously created nodes can be used as well as
nodes that were already present in the graph. Practically, for each common
subtree type, a function has to be created in order to facilitate the use of the
algorithm. The function itself invokes the algorithm with the contents of the
created node and the appropriate parameters.

4 Related work

The design of the representation was shaped through years of experimentation
and experience with refactoring functional programs. The first refactoring
tools produced at ELTE [5, 8] used standard ASTs for representing the syntax.
It became evident that such a representation is not convenient enough for
refactoring purposes, and a new design was needed. The resulting design [4]
already used the contracted graph described in section 2 as representation of
the syntax tree.

The Java language tools srcML [9], JavaML [3] and JaML [1] use XML
to model Java source code. XML documents can be equipped with schema
information against which they can be checked. If the schema is formulated
in XML itself, subtree construction algorithms similar to the one presented in
this paper can be devised.

5 Acknowledgements

The refactoring group at ELTE has helped the author conceive, shape, test
and improve the algorithm described in the paper.

This work was supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK
and Ericsson Hungary.



44 R. Kitlei

References

[1] G. Fischer, J. Lusiardi, and J. Wolff v. Gudenberg, Abstract syntax trees
and their role in model driven software development. In ICSEA online
proceedings. IEEE, 2007.

[2] J. Barklund and R. Virding, Erlang Reference Manual, 1999, Available
from http://www.erlang.org/download/erl spec47.ps.gz.

[3] Greg J. Badros, Javaml: a markup language for java source code. In Pro-
ceedings of the 9th international World Wide Web conference on Com-
puter networks: the international journal of computer and telecommunica-
tions networking, pages 159–177. North-Holland Publishing Co. Amster-
dam, The Netherlands, The Netherlands, 2000.

[4] Róbert Kitlei, László Lövei, Tamás Nagy, Zoltán Horváth, Tamás Kozsik,
Preprocessor and whitespace-aware toolset for Erlang source code manip-
ulation. Abstract submitted to the 20th International Symposium on the
Implementation and Application of Functional Languages, Hatfield UK.

[5] R. Szabó-Nacsa, P. Divinszky, and Z. Horváth, Prototype environment for
refactoring Clean programs. In The Fourth Conference of PhD Students in
Computer Science (CSCS 2004), Szeged, Hungary, July 1–4, 2004.

[6] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Vı́g, and T. Nagy,
Refactoring Erlang Programs. In Proceedings of the 12th International Er-
lang/OTP User Conference, November 2006.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[8] L. Lövei, Z. Horváth, T. Kozsik, R. Király, A. Vı́g, and T. Nagy, Refactor-
ing in Erlang, a Dynamic Functional Language. In Proceedings of the 1st
Workshop on Refactoring Tools, Berlin, Germany, July 2007, pp. 45-46.

[9] Jonathan I. Maletic, Michael L. Collard, and Adrian Marcus, Source code
files as structured documents. In Proceedings of 10th IEEE International
Workshop on Program Comprehension (IWPC’02), pp. 289–292. IEEE
Computer Society Washington, DC, USA, 2002.

Received: October 1, 2008


